Processing math: 10%

NOTES ON STATISTICS, PROBABILITY and MATHEMATICS


The Matrix as a Change of Basis:


We can consider A as transformation A:RnRm for an m×n matrix.

From the Kahn Academy series:

If we have a basis, B={v1,v2,,vk} the coordinates of a vector a with respect to this basis can be expressed as:

[a]B=[c1c2ck]

Equivalently,

c1v1+c2v2++ckvk=[|||v1v2vk|||]change of basis matrix 'C'[c1c2ck]

So

\Large\bbox[yellow, 10px]{ \text{C}\quad [\vec a]_B \quad=\quad [\vec a]_{\text{standard}}}


The change of basis matrix is the matrix with the basis vectors as columns.


Similarly we can solve for the coordinates of a vector with respect to a basis: If we know that the vector \vec d = \begin{bmatrix}8\\-6\\2\end{bmatrix} is in the span of the \mathbb R^2 basis \vec v_1 = \begin{bmatrix}1\\2\\3\end{bmatrix} and \vec v_2 = \begin{bmatrix}1\\0\\1\end{bmatrix}, we can solve \text{C}\,\color{red}{ [\vec d]_B}=\vec d, as a system of linear equations (expanded matrix).


If \text{C} is invertible (i.e. it is square and with linearly independent column vectors - a given in a basis), the span of \text{C} is \mathbb R^n, and:

\large \text{C}^{-1} \quad \text{C}\quad [\vec a]_B= \text{C}^{-1} \quad\vec a

and hence,

\bbox[yellow, 10px]{\Large[\vec a]_B\quad= \quad\text{C}^{-1} \quad[\vec a]_{\text{standard}}}

In general,

\bbox[yellow, 10px]{\Large[\vec a]_{\text{new coord.}}\quad= \quad\text{C}^{-1} \quad[\vec a]_{\text{old coord}}}\tag{1}


\large \bf A\vec x is a linear transformation (transformation = mapping or function operating on vectors expressed as T(\vec x)) of \vec x with \vec x expressed in the standard basis: T(\vec x) = A\vec x. But there are multiple different bases. The mapping afforded by the transformation on [\vec x]_B will be [T(\vec x)]_B. We can find a matrix \text{D}, such that [T(\vec x)]_B= \text{D} [\vec x]_B\tag{2}

\text{D} is the transformation matrix for T with respect to B.

Now, T(\vec x) = A\vec x, and replacing in Eq.2:

[T(\vec x)]_B=[A\vec x]_B =\text{D} [\vec x]_B

From Eq.1, [A\vec x]_B can be expressed as:

[A\vec x]_B= \text{C}^{-1} A\vec x

at the same time \vec x = \text{C}[\vec x]_B. Therefore,

\Large\bbox[yellow, 10px]{\text{D}\quad [\vec x]_B\quad=\quad [A\vec x]_B \quad= \quad \text{C}^{-1}\quad A\quad \text{C}\quad[\vec x]_B}

We can also see that

\text{D}\quad\text{C}^{-1}=\text{C}^{-1}\quad A \quad \text{C}\quad\text{C}^{-1}

or

\text{C}\quad\text{D}\quad\text{C}^{-1}=\text{C}\quad\text{C}^{-1}\quad A\quad \text{C}\quad\text{C}^{-1}

Hence,

\Large A = \text{C D C}^{-1}


Summary diagram:


\require{AMScd} \begin{CD} \text{STD. COORD: }\vec x @>\text{A}>> T(\vec x)\\ @V V \text{C inv} V @VV \text{C inv} V\\ \text{COORD wrt B: }[\vec x]_B @>>\text{D}> T[(\vec x)]_B \end{CD}

From this lecture by Norm Wildberger.

Any point on the plane is expressed differently by Emily \vec e=\begin{bmatrix}\bf \color{green}{e_1} \\ \bf \color{blue}{e_2 }\end{bmatrix} compared to Frank \vec f=\begin{bmatrix} \bf \color{orange}{f_1} \\ \bf \color{brown}{f_2} \end{bmatrix}.

So we can say that Frank’s basis vector \vec f_1=\begin{bmatrix}\color{orange}{1_{\text{f}}}\\\color{brown}{0_{\text{f}}}\end{bmatrix} is \vec f_1 = 5 \, \color{green}{e_1} - 2 \, \color{blue}{e_2}; and Frank’s basis vector \vec f_2=\begin{bmatrix}\color{orange}{0_\text{f}}\\\color{brown}{1_\text{f}}\end{bmatrix} is \vec f_2 = 1.5 \, \color{green}{e_1} + 2.5 \, \color{blue}{e_2} from Emily’s perspective.


Or we can say that the basis vectors in Frank’s system will be seen from Emily’s perspective as:

\left(\vec f_1\right)_{\vec e}=\begin{bmatrix}\color{green}{5} & \color{green}{1.5} \\ \color{blue}{-2} & \color{blue}{2.5}\end{bmatrix}\,\begin{bmatrix}\color{orange}{1_{\text{f}}}\\\color{brown}{0_{\text{f}}}\end{bmatrix}=\begin{bmatrix}{\color{green}{5}\\\color{blue}{-2}}\end{bmatrix}

and

\left(\vec f_2\right)_{\vec e}=\begin{bmatrix}\color{green}{5} & \color{green}{1.5} \\ \color{blue}{-2} & \color{blue}{2.5}\end{bmatrix}\,\begin{bmatrix}\color{orange}{0_{\text{f}}}\\\color{brown}{1_{\text{f}}}\end{bmatrix}=\begin{bmatrix}{\color{green}{1.5}\\\color{blue}{2.5}}\end{bmatrix}

So in the columns of \bf A =\begin{bmatrix}\color{green}{5} & \color{green}{1.5} \\ \color{blue}{-2} & \color{blue}{2.5}\end{bmatrix} we have stored how the basis vectors in Frank’s system are expressed in Emily’s basis:

\bf A =\begin{bmatrix}\color{green}{5} & \color{green}{1.5} \\ \color{blue}{-2} & \color{blue}{2.5}\end{bmatrix} = \begin{bmatrix}\vert & \vert \\ (\vec f_1)_{\vec e} & (\vec f_2)_{\vec e} \\ \vert & \vert \end{bmatrix}

If we were to express in Emily’s system some other vector initially given in Frank’s system we would just have to perform the operation:

\begin{align}\begin{bmatrix}\bf y_{1e}\\\bf{y_{2e}}\end{bmatrix}&= \begin{bmatrix}\color{green}{5} & \color{green}{1.5} \\ \color{blue}{-2} & \color{blue}{2.5}\end{bmatrix}\begin{bmatrix}\bf x_{1f}\\\bf x_{2f}\end{bmatrix}\\[2ex] &=\bf x_{1f}\begin{bmatrix}\color{green}{5}\\\color{blue}{-2}\end{bmatrix} + \bf x_{2f}\begin{bmatrix}\color{green}{1.5}\\\color{blue}{2.5}\end{bmatrix} \end{align}

The thing to note is that \bf x_{1f} will multiply the first column in the matrix to contribute to \bf y (the first basis vector contribution); and \bf x_{2f} will multiply the second column vector to contribute to \bf y (the second basis vector contribution, expressed in Emily’s language).

Clearly we have just made up the equivalence between vector basis in between systems, and any other matrix \bf A would have served the purpose. Therefore we can say that the operation \bf Ax = b is the equivalent of a change of basis: \begin{bmatrix}{\bf y_{1e} \\ \bf y_{2e}}\end{bmatrix} is \begin{bmatrix}{\bf x_{1f} \\ \bf x_{2f}}\end{bmatrix} viewed from Emily’s perspective!

So is the system of equations:

\begin{align} 5{\bf x_{1f}} + 1.5\bf{x_{2f}}&=\bf{y_{1e}}\\ -2{\bf x_{1f}} + 2.5 \bf{x_{2f}} &=\bf{y_{2e}} \end{align}

Can we express Emily’s vectors from Frank’s perspective? Yes:

\begin{align} \frac{5}{31}{\bf y_{1e}} \frac{-3}{31}\bf{y_{2e}}&=\bf{x_{1f}}\\ \frac{4}{31}{\bf y_{1f}} + \frac{10}{31} \bf{y_{2e}} &=\bf{x_{2f}} \end{align}

or

\begin{bmatrix}\color{green}{5} & \color{green}{1.5} \\ \color{blue}{-2} & \color{blue}{2.5}\end{bmatrix}^{-1}=\begin{bmatrix}\color{orange}{\frac{5}{31}}&\color{orange}{\frac{-3}{31}}\\\color{brown}{\frac{4}{31}}&\color{brown}{\frac{10}{31}}\end{bmatrix}

So now we can look at the Emily’s coordinates vector \begin{bmatrix}\bf y_{1e}\\ \bf y_{1e}\end{bmatrix} in Frank’s coordinates:

\begin{bmatrix}\color{orange}{\frac{5}{31}}&\color{orange}{\frac{-3}{31}}\\\color{brown}{\frac{4}{31}}&\color{brown}{\frac{10}{31}}\end{bmatrix}\begin{bmatrix}{\bf y_{1e} \\ y_{1e}}\end{bmatrix}=\begin{bmatrix}{\bf x_{1f} \\ \bf x_{2f}}\end{bmatrix}

Likewise, the basis vectors of Emily with respect to Frank’s are:

\left(\vec e_1\right)_{\vec f}=\begin{bmatrix}\color{orange}{\frac{5}{31}}&\color{orange}{\frac{-3}{31}}\\\color{brown}{\frac{4}{31}}&\color{brown}{\frac{10}{31}}\end{bmatrix}\,\begin{bmatrix}\color{green}{1_{\text{e}}}\\\color{blue}{0_{\text{e}}}\end{bmatrix}=\begin{bmatrix}{\color{orange}{\frac{5}{31}}\\\color{brown}{\frac{4}{31}}}\end{bmatrix}

and

\left(\vec e_2\right)_{\vec f}=\begin{bmatrix}\color{orange}{\frac{5}{31}}&\color{orange}{\frac{-3}{31}}\\\color{brown}{\frac{4}{31}}&\color{brown}{\frac{10}{31}}\end{bmatrix}\,\begin{bmatrix}\color{green}{0_{\text{e}}}\\\color{blue}{1_{\text{e}}}\end{bmatrix}=\begin{bmatrix}{\color{orange}{\frac{-3}{31}}\\\color{brown}{\frac{10}{31}}}\end{bmatrix}


Home Page

NOTE: These are tentative notes on different topics for personal use - expect mistakes and misunderstandings.