NOTES ON STATISTICS, PROBABILITY and MATHEMATICS


P-Values in the ANOVA of a Regression OLS Model:


Two sets of p-values are returned in a linear model:

As a toy example, let’s look at different linear models predicting the variable miles-per-gallon in the dataset mtcars.

For instance, we have an idea that the miles per gallon consumed by different vehicles may be related to the type of transmission:

aggregate(mpg ~ am, mtcars, mean)
##   am      mpg
## 1  0 17.14737
## 2  1 24.39231
t.test(mtcars$mpg[which(mtcars$am==0)],mtcars$mpg[which(mtcars$am==1)])
## 
##  Welch Two Sample t-test
## 
## data:  mtcars$mpg[which(mtcars$am == 0)] and mtcars$mpg[which(mtcars$am == 1)]
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.280194  -3.209684
## sample estimates:
## mean of x mean of y 
##  17.14737  24.39231

The base model explains

base <- lm(mpg ~ am, mtcars)
summary(base)
## 
## Call:
## lm(formula = mpg ~ am, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.3923 -3.0923 -0.2974  3.2439  9.5077 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   17.147      1.125  15.247 1.13e-15 ***
## am             7.245      1.764   4.106 0.000285 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared:  0.3598, Adjusted R-squared:  0.3385 
## F-statistic: 16.86 on 1 and 30 DF,  p-value: 0.000285

\(36\) percent of the variation (R squared), which is statistically significant at a p-value: \(0.000285.\) But we can include additional variables:

all <- lm(mpg ~.,mtcars)
summary(all)
## 
## Call:
## lm(formula = mpg ~ ., data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4506 -1.6044 -0.1196  1.2193  4.6271 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 12.30337   18.71788   0.657   0.5181  
## cyl         -0.11144    1.04502  -0.107   0.9161  
## disp         0.01334    0.01786   0.747   0.4635  
## hp          -0.02148    0.02177  -0.987   0.3350  
## drat         0.78711    1.63537   0.481   0.6353  
## wt          -3.71530    1.89441  -1.961   0.0633 .
## qsec         0.82104    0.73084   1.123   0.2739  
## vs           0.31776    2.10451   0.151   0.8814  
## am           2.52023    2.05665   1.225   0.2340  
## gear         0.65541    1.49326   0.439   0.6652  
## carb        -0.19942    0.82875  -0.241   0.8122  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared:  0.869,  Adjusted R-squared:  0.8066 
## F-statistic: 13.93 on 10 and 21 DF,  p-value: 3.793e-07

We can use the AIC to search for the best model:

best <- step(all, direction='both')
## Start:  AIC=70.9
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
## 
##        Df Sum of Sq    RSS    AIC
## - cyl   1    0.0799 147.57 68.915
## - vs    1    0.1601 147.66 68.932
## - carb  1    0.4067 147.90 68.986
## - gear  1    1.3531 148.85 69.190
## - drat  1    1.6270 149.12 69.249
## - disp  1    3.9167 151.41 69.736
## - hp    1    6.8399 154.33 70.348
## - qsec  1    8.8641 156.36 70.765
## <none>              147.49 70.898
## - am    1   10.5467 158.04 71.108
## - wt    1   27.0144 174.51 74.280
## 
## Step:  AIC=68.92
## mpg ~ disp + hp + drat + wt + qsec + vs + am + gear + carb
## 
##        Df Sum of Sq    RSS    AIC
## - vs    1    0.2685 147.84 66.973
## - carb  1    0.5201 148.09 67.028
## - gear  1    1.8211 149.40 67.308
## - drat  1    1.9826 149.56 67.342
## - disp  1    3.9009 151.47 67.750
## - hp    1    7.3632 154.94 68.473
## <none>              147.57 68.915
## - qsec  1   10.0933 157.67 69.032
## - am    1   11.8359 159.41 69.384
## + cyl   1    0.0799 147.49 70.898
## - wt    1   27.0280 174.60 72.297
## 
## Step:  AIC=66.97
## mpg ~ disp + hp + drat + wt + qsec + am + gear + carb
## 
##        Df Sum of Sq    RSS    AIC
## - carb  1    0.6855 148.53 65.121
## - gear  1    2.1437 149.99 65.434
## - drat  1    2.2139 150.06 65.449
## - disp  1    3.6467 151.49 65.753
## - hp    1    7.1060 154.95 66.475
## <none>              147.84 66.973
## - am    1   11.5694 159.41 67.384
## - qsec  1   15.6830 163.53 68.200
## + vs    1    0.2685 147.57 68.915
## + cyl   1    0.1883 147.66 68.932
## - wt    1   27.3799 175.22 70.410
## 
## Step:  AIC=65.12
## mpg ~ disp + hp + drat + wt + qsec + am + gear
## 
##        Df Sum of Sq    RSS    AIC
## - gear  1     1.565 150.09 63.457
## - drat  1     1.932 150.46 63.535
## <none>              148.53 65.121
## - disp  1    10.110 158.64 65.229
## - am    1    12.323 160.85 65.672
## - hp    1    14.826 163.35 66.166
## + carb  1     0.685 147.84 66.973
## + vs    1     0.434 148.09 67.028
## + cyl   1     0.414 148.11 67.032
## - qsec  1    26.408 174.94 68.358
## - wt    1    69.127 217.66 75.350
## 
## Step:  AIC=63.46
## mpg ~ disp + hp + drat + wt + qsec + am
## 
##        Df Sum of Sq    RSS    AIC
## - drat  1     3.345 153.44 62.162
## - disp  1     8.545 158.64 63.229
## <none>              150.09 63.457
## - hp    1    13.285 163.38 64.171
## + gear  1     1.565 148.53 65.121
## + cyl   1     1.003 149.09 65.242
## + vs    1     0.645 149.45 65.319
## + carb  1     0.107 149.99 65.434
## - am    1    20.036 170.13 65.466
## - qsec  1    25.574 175.67 66.491
## - wt    1    67.572 217.66 73.351
## 
## Step:  AIC=62.16
## mpg ~ disp + hp + wt + qsec + am
## 
##        Df Sum of Sq    RSS    AIC
## - disp  1     6.629 160.07 61.515
## <none>              153.44 62.162
## - hp    1    12.572 166.01 62.682
## + drat  1     3.345 150.09 63.457
## + gear  1     2.977 150.46 63.535
## + cyl   1     2.447 150.99 63.648
## + vs    1     1.121 152.32 63.927
## + carb  1     0.011 153.43 64.160
## - qsec  1    26.470 179.91 65.255
## - am    1    32.198 185.63 66.258
## - wt    1    69.043 222.48 72.051
## 
## Step:  AIC=61.52
## mpg ~ hp + wt + qsec + am
## 
##        Df Sum of Sq    RSS    AIC
## - hp    1     9.219 169.29 61.307
## <none>              160.07 61.515
## + disp  1     6.629 153.44 62.162
## + carb  1     3.227 156.84 62.864
## + drat  1     1.428 158.64 63.229
## - qsec  1    20.225 180.29 63.323
## + cyl   1     0.249 159.82 63.465
## + vs    1     0.249 159.82 63.466
## + gear  1     0.171 159.90 63.481
## - am    1    25.993 186.06 64.331
## - wt    1    78.494 238.56 72.284
## 
## Step:  AIC=61.31
## mpg ~ wt + qsec + am
## 
##        Df Sum of Sq    RSS    AIC
## <none>              169.29 61.307
## + hp    1     9.219 160.07 61.515
## + carb  1     8.036 161.25 61.751
## + disp  1     3.276 166.01 62.682
## + cyl   1     1.501 167.78 63.022
## + drat  1     1.400 167.89 63.042
## + gear  1     0.123 169.16 63.284
## + vs    1     0.000 169.29 63.307
## - am    1    26.178 195.46 63.908
## - qsec  1   109.034 278.32 75.217
## - wt    1   183.347 352.63 82.790
summary(best)
## 
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4811 -1.5555 -0.7257  1.4110  4.6610 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   9.6178     6.9596   1.382 0.177915    
## wt           -3.9165     0.7112  -5.507 6.95e-06 ***
## qsec          1.2259     0.2887   4.247 0.000216 ***
## am            2.9358     1.4109   2.081 0.046716 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared:  0.8497, Adjusted R-squared:  0.8336 
## F-statistic: 52.75 on 3 and 28 DF,  p-value: 1.21e-11

This explains \(85\) percent of the variation based on the variables selected.

There are two sets of p-values returned:

  • One to assess the the overall model: \(\mathrm {p-value:} 1.21e-11.\) This indicates that a significant amount of the variance in the dependent variable is explained by the model. While the R-squared provides an estimate of the strength of the relationship between the model and the response variable, the F-test p-value intends to assess the significance of including the independence variables selected, compared to NO independent variables (intercept-only model). The R-squared value is not a formal test of the strength of the relationship between the dependent an independent variables. If the p-value is significant, we can conclude that the R-squared value is different from zero.

  • One for each predictor, in the output besides each variable, indicating whether a variable contributes to explaining a significant amount of unique variance (information). This is the result of a t-test for each individual variable.

All this needs to be constrasted with checking that the statistical conditions are met by looking at the residual diagnostic plots:

par(mfrow=c(2,2))
plot(best,pch=19, cex=.8, cex.axis=.5)

Using ANOVA to compare models:

And now we use ANOVA to compare both models to see that the difference explained by the two models is statistically significant:

anova(base,best)
## Analysis of Variance Table
## 
## Model 1: mpg ~ am
## Model 2: mpg ~ wt + qsec + am
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)    
## 1     30 720.90                                 
## 2     28 169.29  2    551.61 45.618 1.55e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is a significant difference between both models.


Home Page

NOTE: These are tentative notes on different topics for personal use - expect mistakes and misunderstandings.