As a toy example, let’s look at different linear models predicting the variable miles-per-gallon in the dataset mtcars.
For instance, we have an idea that the miles per gallon consumed by different vehicles may be related to the type of transmission:
aggregate(mpg ~ am, mtcars, mean)
## am mpg
## 1 0 17.14737
## 2 1 24.39231
t.test(mtcars$mpg[which(mtcars$am==0)],mtcars$mpg[which(mtcars$am==1)])
##
## Welch Two Sample t-test
##
## data: mtcars$mpg[which(mtcars$am == 0)] and mtcars$mpg[which(mtcars$am == 1)]
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean of x mean of y
## 17.14737 24.39231
The base model explains
base <- lm(mpg ~ am, mtcars)
summary(base)
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147 1.125 15.247 1.13e-15 ***
## am 7.245 1.764 4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
\(36\) percent of the variation (R squared), which is statistically significant at a p-value: \(0.000285.\) But we can include additional variables:
all <- lm(mpg ~.,mtcars)
summary(all)
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4506 -1.6044 -0.1196 1.2193 4.6271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.30337 18.71788 0.657 0.5181
## cyl -0.11144 1.04502 -0.107 0.9161
## disp 0.01334 0.01786 0.747 0.4635
## hp -0.02148 0.02177 -0.987 0.3350
## drat 0.78711 1.63537 0.481 0.6353
## wt -3.71530 1.89441 -1.961 0.0633 .
## qsec 0.82104 0.73084 1.123 0.2739
## vs 0.31776 2.10451 0.151 0.8814
## am 2.52023 2.05665 1.225 0.2340
## gear 0.65541 1.49326 0.439 0.6652
## carb -0.19942 0.82875 -0.241 0.8122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
We can use the AIC to search for the best model:
best <- step(all, direction='both')
## Start: AIC=70.9
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
##
## Df Sum of Sq RSS AIC
## - cyl 1 0.0799 147.57 68.915
## - vs 1 0.1601 147.66 68.932
## - carb 1 0.4067 147.90 68.986
## - gear 1 1.3531 148.85 69.190
## - drat 1 1.6270 149.12 69.249
## - disp 1 3.9167 151.41 69.736
## - hp 1 6.8399 154.33 70.348
## - qsec 1 8.8641 156.36 70.765
## <none> 147.49 70.898
## - am 1 10.5467 158.04 71.108
## - wt 1 27.0144 174.51 74.280
##
## Step: AIC=68.92
## mpg ~ disp + hp + drat + wt + qsec + vs + am + gear + carb
##
## Df Sum of Sq RSS AIC
## - vs 1 0.2685 147.84 66.973
## - carb 1 0.5201 148.09 67.028
## - gear 1 1.8211 149.40 67.308
## - drat 1 1.9826 149.56 67.342
## - disp 1 3.9009 151.47 67.750
## - hp 1 7.3632 154.94 68.473
## <none> 147.57 68.915
## - qsec 1 10.0933 157.67 69.032
## - am 1 11.8359 159.41 69.384
## + cyl 1 0.0799 147.49 70.898
## - wt 1 27.0280 174.60 72.297
##
## Step: AIC=66.97
## mpg ~ disp + hp + drat + wt + qsec + am + gear + carb
##
## Df Sum of Sq RSS AIC
## - carb 1 0.6855 148.53 65.121
## - gear 1 2.1437 149.99 65.434
## - drat 1 2.2139 150.06 65.449
## - disp 1 3.6467 151.49 65.753
## - hp 1 7.1060 154.95 66.475
## <none> 147.84 66.973
## - am 1 11.5694 159.41 67.384
## - qsec 1 15.6830 163.53 68.200
## + vs 1 0.2685 147.57 68.915
## + cyl 1 0.1883 147.66 68.932
## - wt 1 27.3799 175.22 70.410
##
## Step: AIC=65.12
## mpg ~ disp + hp + drat + wt + qsec + am + gear
##
## Df Sum of Sq RSS AIC
## - gear 1 1.565 150.09 63.457
## - drat 1 1.932 150.46 63.535
## <none> 148.53 65.121
## - disp 1 10.110 158.64 65.229
## - am 1 12.323 160.85 65.672
## - hp 1 14.826 163.35 66.166
## + carb 1 0.685 147.84 66.973
## + vs 1 0.434 148.09 67.028
## + cyl 1 0.414 148.11 67.032
## - qsec 1 26.408 174.94 68.358
## - wt 1 69.127 217.66 75.350
##
## Step: AIC=63.46
## mpg ~ disp + hp + drat + wt + qsec + am
##
## Df Sum of Sq RSS AIC
## - drat 1 3.345 153.44 62.162
## - disp 1 8.545 158.64 63.229
## <none> 150.09 63.457
## - hp 1 13.285 163.38 64.171
## + gear 1 1.565 148.53 65.121
## + cyl 1 1.003 149.09 65.242
## + vs 1 0.645 149.45 65.319
## + carb 1 0.107 149.99 65.434
## - am 1 20.036 170.13 65.466
## - qsec 1 25.574 175.67 66.491
## - wt 1 67.572 217.66 73.351
##
## Step: AIC=62.16
## mpg ~ disp + hp + wt + qsec + am
##
## Df Sum of Sq RSS AIC
## - disp 1 6.629 160.07 61.515
## <none> 153.44 62.162
## - hp 1 12.572 166.01 62.682
## + drat 1 3.345 150.09 63.457
## + gear 1 2.977 150.46 63.535
## + cyl 1 2.447 150.99 63.648
## + vs 1 1.121 152.32 63.927
## + carb 1 0.011 153.43 64.160
## - qsec 1 26.470 179.91 65.255
## - am 1 32.198 185.63 66.258
## - wt 1 69.043 222.48 72.051
##
## Step: AIC=61.52
## mpg ~ hp + wt + qsec + am
##
## Df Sum of Sq RSS AIC
## - hp 1 9.219 169.29 61.307
## <none> 160.07 61.515
## + disp 1 6.629 153.44 62.162
## + carb 1 3.227 156.84 62.864
## + drat 1 1.428 158.64 63.229
## - qsec 1 20.225 180.29 63.323
## + cyl 1 0.249 159.82 63.465
## + vs 1 0.249 159.82 63.466
## + gear 1 0.171 159.90 63.481
## - am 1 25.993 186.06 64.331
## - wt 1 78.494 238.56 72.284
##
## Step: AIC=61.31
## mpg ~ wt + qsec + am
##
## Df Sum of Sq RSS AIC
## <none> 169.29 61.307
## + hp 1 9.219 160.07 61.515
## + carb 1 8.036 161.25 61.751
## + disp 1 3.276 166.01 62.682
## + cyl 1 1.501 167.78 63.022
## + drat 1 1.400 167.89 63.042
## + gear 1 0.123 169.16 63.284
## + vs 1 0.000 169.29 63.307
## - am 1 26.178 195.46 63.908
## - qsec 1 109.034 278.32 75.217
## - wt 1 183.347 352.63 82.790
summary(best)
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4811 -1.5555 -0.7257 1.4110 4.6610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6178 6.9596 1.382 0.177915
## wt -3.9165 0.7112 -5.507 6.95e-06 ***
## qsec 1.2259 0.2887 4.247 0.000216 ***
## am 2.9358 1.4109 2.081 0.046716 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
This explains \(85\) percent of the variation based on the variables selected.
There are two sets of p-values returned:
One to assess the the overall model: \(\mathrm {p-value:} 1.21e-11.\) This indicates that a significant amount of the variance in the dependent variable is explained by the model. While the R-squared provides an estimate of the strength of the relationship between the model and the response variable, the F-test p-value intends to assess the significance of including the independence variables selected, compared to NO independent variables (intercept-only model). The R-squared value is not a formal test of the strength of the relationship between the dependent an independent variables. If the p-value is significant, we can conclude that the R-squared value is different from zero.
One for each predictor, in the output besides each variable, indicating whether a variable contributes to explaining a significant amount of unique variance (information). This is the result of a t-test for each individual variable.
All this needs to be constrasted with checking that the statistical conditions are met by looking at the residual diagnostic plots:
par(mfrow=c(2,2))
plot(best,pch=19, cex=.8, cex.axis=.5)
And now we use ANOVA to compare both models to see that the difference explained by the two models is statistically significant:
anova(base,best)
## Analysis of Variance Table
##
## Model 1: mpg ~ am
## Model 2: mpg ~ wt + qsec + am
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 30 720.90
## 2 28 169.29 2 551.61 45.618 1.55e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
There is a significant difference between both models.
NOTE: These are tentative notes on different topics for personal use - expect mistakes and misunderstandings.